
Free Monads

Noel Welsh, @noelwelsh

underscore

Advanced Scala, London  
7th April 2015



What?



Free monad =  
monad + interpreter



Why?



It solves difficult 
problems



E.g.  
Facebook Haxl / Twitter 

Stitch



Orchestrate web 
service requests



Batch requests



Cache results



Compare recent Etsy 
blog post



Monads



Functional programming is 
about transforming values



A => B => C



FP patterns are just 
special cases of this



A => B => C



F[A] => F[B] => F[C]



F[A] => F[B] => F[C]F[A] => F[B] => F[C]



F[A] => F[B]



F[A] flatMap (A => F[B])



Monads are about 
sequencing computations



Broadly applicable (& 

applicative)



Aside: monads were 
introduced to model 
language semantics



Aside: all monads can be 
expressed in terms of the 

continuation monad



Interpreters



Separate structure and 
meaning



Structure: represent 
computation as data



E.g.  
1 + 2 + 3 = Add(1, Add(2, 3)



Abstract syntax tree



Meaning: run or 
“interpret” the structure



E.g. 
Compute with Int, Double, 

or arbitrary precision



E.g. 
Compute with Dual Numbers 

(automatic differentiation)



E.g. 
Compute with SIMD or 

GPU



Doodle: One AST. JS 
and JVM interpreters



Free Monads



Free monad provides an 
AST for monadic 

operations



We can then write 
custom interpreters



Haxl / Stitch custom 
interpreter



What does the AST 
look like?



Monad has two 
operations: flatMap and 

point



So AST has two cases: 
flatMap and point



Aside: Scalaz AST slightly 
more complex to support 

trampolining



What does an 
interpreter look like?



A natural 
transformation



Example



That’s it!



Aside: The free monad 
requires that it’s payload 

is a Functor



Aside: We can construct a 
Functor from any value 

using the Coyoneda



Aside: We often want to 
combine different payloads 

in the free monad.



Aside: We can do this with 
Coproducts yielding composable 

monads and interpreters



Conclusions



Free monads are 
simple



It’s just an AST and an 
interpreter for that AST



Functional programming is 
just the same stuff over 

and over again



Meta-Conclusions



Exciting times for 
functional programming



New techniques being 
discovered now



Composable interpreters 
via the free monad was 

2008



Industry adoption driving 
compression of transfer time 

from academia to practice



Programming practice is 
being reclaimed from 
software engineering



Build your toolbox



Invest in excellence



Reap the rewards



 
underscore.io/training/

courses/advanced-
scala/

http://underscore.io/training/courses/essential-scala/

