
Essential Scala

Noel Welsh, @noelwelsh

underscore

Six Core Concepts for
Learning Scala

Introduction

Scala is complex?

Self types 
Type bounds  

Existential types
Trait stacks 

Overloading 
Implicit conversions

Is doesn’t have to be
this way

1. Expressions, types, & values

2. Objects and classes

3. Algebraic data types

4. Structural recursion

5. Sequencing computation

6. Type classes

1. Expressions, types, & values

2. Objects and classes

3. Algebraic data types

4. Structural recursion

5. Sequencing computation

6. Type classes

Huge thanks to the PLT team 
http://racket-lang.org/

people.html

http://racket-lang.org/people.html

Algebraic Data Types

Goal: translate data
descriptions into code

Model data with logical
ors and logical ands

A website visitor is:
• logged in; or
• anonymous

A logged in user has:
• an ID; and
• an email address

Structure of the code
follows the structure of

the data

Two patterns:
• product types (and)
• sum types (or)

Product type:  
A has a B and C

 
A has a B and C

final case class A(b: B, c: C)

 
A has a B and C

final case class A(b: B, c: C)

 
A has a B and C

final case class A(b: B, c: C)

 
A has a B and C

final case class A(b: B, c: C)

Sum type:  
A is a B or C

 
A is a B or C

sealed trait A
final case class B() extends A
final case class C() extends A

 
A is a B or C

sealed trait A
final case class B() extends A
final case class C() extends A

 
A is a B or C

sealed trait A
final case class B() extends A
final case class C() extends A

 
A is a B or C

sealed trait A
final case class B() extends A
final case class C() extends A

Sum and product together
make algebraic data types

Examples

A website visitor is:
• logged in; or
• anonymous

sealed trait Visitor
final case class Anonymous() 
 extends Visitor
final case class User() 
 extends Visitor

A logged in user has:
• an ID; and
• an email address

An anonymous has:
• an ID

sealed trait Visitor {
 def id: Id
}
final case class Anonymous(id: Id)  
 extends Visitor
final case class User(id: Id, email: Email)  
 extends Visitor

A calculation is a
success or failure

sealed trait Calculation
final case class Success() 
 extends Calculation
final case class Failure() 
 extends Calculation

A success has a value.  
A failure has an error

message

sealed trait Calculation
final case class Success(value: Int)  
 extends Calculation
final case class Failure(msg: String)  
 extends Calculation

Summary

• Structure data with logical ands and ors

• These are called algebraic data types

• Code follows immediately from structure of the
data

Structural Recursion

Goal: transform
algebraic data types

sealed trait Calculation
final case class Success(value: Int)  
 extends Calculation
final case class Failure(msg: String)  
 extends Calculation

Implement on
Calculation

def add(value: Int): Calculation = ???

Structure of the code
follows structure of the

data

Two (sub-)patterns:
pattern matching and

polymorphism

A is a B or C 
B has a D and E 
C has a F and G

sealed trait A
final case class B(d: D, e: E) extends A
final case class C(f: F, g: G) extends A

Pattern matching

sealed trait A {
 def doSomething: H = {
 this match {
 case B(d, e) => doB(d, e)
 case C(f, g) => doC(f, g)
 }
 }
}
final case class B(d: D, e: E) extends A
final case class C(f: F, g: G) extends A

Polymorphism

sealed trait A {
 def doSomething: H
}
final case class B(d: D, e: E) extends A {
 def doSomething: H =
 doB(d, e)
}
final case class C(f: F, g: G) extends A {
 def doSomething: H =
 doC(f, g)
}

Example

sealed trait Calculation
final case class Success(value: Int)  
 extends Calculation
final case class Failure(msg: String)  
 extends Calculation

Add an Int to a
Calculation

sealed trait Calculation {
 def add(value: Int): Calculation = ???
}  

final case class Success(value: Int)  
 extends Calculation
 
final case class Failure(msg: String)  
 extends Calculation

sealed trait Calculation {
 def add(value: Int): Calculation =
 this match {
 case Success(v) => ???
 case Failure(msg) => ???
 }
}

final case class Success(value: Int)  
 extends Calculation

final case class Failure(msg: String)  
 extends Calculation

sealed trait Calculation {
 def add(value: Int): Calculation =
 this match {
 case Success(v) =>  
 Success(v + value)
 case Failure(msg) =>  
 Failure(msg)
 }
}

final case class Success(value: Int)  
 extends Calculation

final case class Failure(msg: String)  
 extends Calculation

Summary

• Processing algebraic data types immediately
follows from the structure of the data

• Can choose between pattern matching and
polymorphism

• Pattern matching (within the base trait) is usually
preferred

Sequencing
Computation

Goal: patterns for
sequencing computations

Functional programming is
about transforming values

That is all you can do
without introducing side-

effects

A => B => C

This is sequencing
computations

Three patterns: fold,
map, and flatMap

A B=>

Fold

Abstraction over
structural recursion

sealed trait A {
 def doSomething: H = {
 this match {
 case B(d, e) => doB(d, e)
 case C(f, g) => doC(f, g)
 }
 }
}
final case class B(d: D, e: E) extends A
final case class C(f: F, g: G) extends A

sealed trait A {
 def doSomething: H = {
 this match {
 case B(d, e) => doB(d, e)
 case C(f, g) => doC(f, g)
 }
 }
}
final case class B(d: D, e: E) extends A
final case class C(f: F, g: G) extends A

sealed trait A {
 def fold(doB: (D, E) => H, doC: (F, G)
=> H): H = {
 this match {
 case B(d, e) => doB(d, e)
 case C(f, g) => doC(f, g)
 }
 }
}
final case class B(d: D, e: E) extends A
final case class C(f: F, g: G) extends A

Example

A Result is a Success or
Failure

sealed trait Result
final case class Success() extends Result
final case class Failure() extends Result

Success contains a
value of type A

sealed trait Result[A]
 
final case class Success[A](value: A)  
 extends Result[A] 

final case class Failure[A]()  
 extends Result[A]

(This just an invariant
Option)

Implement fold

Start with structural
recursion pattern

sealed trait Result[A] {
 def fold[B]: B =
 this match {
 Success(v) => ???
 Failure() => ???
 }
}
final case class Success[A](value: A)  
 extends Result[A]
final case class Failure[A]()  
 extends Result[A]

Abstract out
arguments

sealed trait Result[A] {
 def fold[B](s: A => B, f: B): B =
 this match {
 Success(v) => s(v)
 Failure() => f
 }
}
final case class Success[A](value: A)  
 extends Result[A]
final case class Failure[A]()  
 extends Result[A]

Fold is a generic transform
for any algebraic data type

Fold is not always the
best choice

Not all data is an
algebraic data type

Sometimes other
methods are easier to use

Result[A]

Get user from database
(might not be a user)

Convert user to JSON

Result[User]

Result[User]

User => Json

Result[Json]

Map

A B=>F[A] F[B]

map =

Get user from database
(might not be a user)

Get order for user (might
not be an order)

Result[User]

Result[User]

User =>
Result[Order]

Result[Order]

FlatMap

A F[B]=>F[A] F[B]

flatMap =

Example

getOrder(id: UserId):  
 HttpResponse

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

???

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

flatMap

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

???

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

map

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

???

Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] =>
HttpResponse

fold

Summary

• Standard patterns for sequencing computations

• F[A] map (A => B) = F[B]

• F[A] flatMap (A => F[B]) = F[B]

• fold is general transformation for algebraic data
types

• You can teach monads in an introductory course!

Type Classes

Ad-hoc polymorphism

Break free from your
class oppressors!

Concerns that cross
class hierarchy

E.g. serialize to JSON

Common behaviour
without (useful) common

type

Abstract behaviour to
a type class

Can implement type class
instances in ad-hoc

manner

Conclusions

Scala is simple

3 patterns are 90% of
code

4 patterns are 99% of
code

Program design in
Scala is systematic

 
underscore.io/training/
courses/essential-scala/ 

 
15% off with flatMap

http://underscore.io/training/courses/essential-scala/

Be like keyboard cat!

