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Learning Scala



Introduction



Scala is complex?



Self types 
Type bounds  

Existential types 
Trait stacks 

Overloading 
Implicit conversions



Is doesn’t have to be 
this way







1. Expressions, types, & values 

2. Objects and classes 

3. Algebraic data types 

4. Structural recursion 

5. Sequencing computation 

6. Type classes



1. Expressions, types, & values 

2. Objects and classes 

3. Algebraic data types 

4. Structural recursion 

5. Sequencing computation 

6. Type classes



Huge thanks to the PLT team 
http://racket-lang.org/

people.html

http://racket-lang.org/people.html


Algebraic Data Types



Goal: translate data 
descriptions into code



Model data with logical 
ors and logical ands



A website visitor is: 
• logged in; or 
• anonymous



A logged in user has: 
•  an ID; and  
• an email address



Structure of the code 
follows the structure of 

the data



Two patterns:  
• product types (and) 
• sum types (or)



Product type:  
A has a B and C



 
A has a B and C

final case class A(b: B, c: C) 
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A has a B and C
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A has a B and C

final case class A(b: B, c: C) 



Sum type:  
A is a B or C



 
A is a B or C

sealed trait A 
final case class B() extends A 
final case class C() extends A 
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A is a B or C

sealed trait A 
final case class B() extends A 
final case class C() extends A 



Sum and product together 
make algebraic data types



Examples



A website visitor is: 
• logged in; or 
• anonymous



sealed trait Visitor 
final case class Anonymous() 
  extends Visitor 
final case class User() 
  extends Visitor



A logged in user has: 
• an ID; and  
• an email address 

An anonymous has: 
• an ID



sealed trait Visitor { 
  def id: Id 
} 
final case class Anonymous(id: Id)  
  extends Visitor 
final case class User(id: Id, email: Email)  
  extends Visitor



A calculation is a 
success or failure



sealed trait Calculation 
final case class Success() 
  extends Calculation 
final case class Failure() 
  extends Calculation



A success has a value.  
A failure has an error 

message



sealed trait Calculation 
final case class Success(value: Int)  
  extends Calculation 
final case class Failure(msg: String)  
  extends Calculation



Summary

• Structure data with logical ands and ors 

• These are called algebraic data types 

• Code follows immediately from structure of the 
data



Structural Recursion



Goal: transform 
algebraic data types



sealed trait Calculation 
final case class Success(value: Int)  
  extends Calculation 
final case class Failure(msg: String)  
  extends Calculation



Implement on 
Calculation

def add(value: Int): Calculation = ??? 



Structure of the code 
follows structure of the 

data



Two (sub-)patterns: 
pattern matching and 

polymorphism



A is a B or C 
B has a D and E 
C has a F and G



sealed trait A 
final case class B(d: D, e: E) extends A 
final case class C(f: F, g: G) extends A



Pattern matching



sealed trait A { 
  def doSomething: H = { 
    this match { 
      case B(d, e) => doB(d, e) 
      case C(f, g) => doC(f, g) 
    } 
  } 
} 
final case class B(d: D, e: E) extends A 
final case class C(f: F, g: G) extends A



Polymorphism



sealed trait A { 
  def doSomething: H 
} 
final case class B(d: D, e: E) extends A { 
  def doSomething: H = 
    doB(d, e) 
} 
final case class C(f: F, g: G) extends A { 
  def doSomething: H = 
    doC(f, g) 
} 



Example



sealed trait Calculation 
final case class Success(value: Int)  
  extends Calculation 
final case class Failure(msg: String)  
  extends Calculation



Add an Int to a 
Calculation



sealed trait Calculation { 
  def add(value: Int): Calculation = ??? 
}  

final case class Success(value: Int)  
  extends Calculation 
 
final case class Failure(msg: String)  
  extends Calculation



sealed trait Calculation { 
  def add(value: Int): Calculation = 
    this match { 
      case Success(v) => ??? 
      case Failure(msg) => ??? 
    } 
} 

final case class Success(value: Int)  
  extends Calculation 

final case class Failure(msg: String)  
  extends Calculation



sealed trait Calculation { 
  def add(value: Int): Calculation = 
    this match { 
      case Success(v) =>  
        Success(v + value) 
      case Failure(msg) =>  
        Failure(msg) 
    } 
} 

final case class Success(value: Int)  
  extends Calculation 

final case class Failure(msg: String)  
  extends Calculation



Summary

• Processing algebraic data types immediately 
follows from the structure of the data 

• Can choose between pattern matching and 
polymorphism 

• Pattern matching (within the base trait) is usually 
preferred



Sequencing 
Computation



Goal: patterns for 
sequencing computations



Functional programming is 
about transforming values



That is all you can do 
without introducing side-

effects



A => B => C



This is sequencing 
computations



Three patterns: fold, 
map, and flatMap



A B=>

Fold



Abstraction over 
structural recursion



sealed trait A { 
  def doSomething: H = { 
    this match { 
      case B(d, e) => doB(d, e) 
      case C(f, g) => doC(f, g) 
    } 
  } 
} 
final case class B(d: D, e: E) extends A 
final case class C(f: F, g: G) extends A



sealed trait A { 
  def doSomething: H = { 
    this match { 
      case B(d, e) => doB(d, e) 
      case C(f, g) => doC(f, g) 
    } 
  } 
} 
final case class B(d: D, e: E) extends A 
final case class C(f: F, g: G) extends A



sealed trait A { 
  def fold(doB: (D, E) => H, doC: (F, G) 
=> H): H = { 
    this match { 
      case B(d, e) => doB(d, e) 
      case C(f, g) => doC(f, g) 
    } 
  } 
} 
final case class B(d: D, e: E) extends A 
final case class C(f: F, g: G) extends A



Example



A Result is a Success or 
Failure



sealed trait Result 
final case class Success() extends Result 
final case class Failure() extends Result



Success contains a 
value of type A



sealed trait Result[A] 
 
final case class Success[A](value: A)  
  extends Result[A] 

final case class Failure[A]()  
  extends Result[A]



(This just an invariant 
Option)



Implement fold



Start with structural 
recursion pattern



sealed trait Result[A] { 
  def fold[B]: B = 
    this match { 
      Success(v) => ??? 
      Failure()  => ???  
    } 
} 
final case class Success[A](value: A)    
  extends Result[A] 
final case class Failure[A]()  
  extends Result[A]



Abstract out 
arguments



sealed trait Result[A] { 
  def fold[B](s: A => B, f: B): B = 
    this match { 
      Success(v) => s(v) 
      Failure()  => f  
    } 
} 
final case class Success[A](value: A)  
  extends Result[A] 
final case class Failure[A]()  
  extends Result[A]



Fold is a generic transform 
for any algebraic data type



Fold is not always the 
best choice



Not all data is an 
algebraic data type



Sometimes other 
methods are easier to use



Result[A]



Get user from database 
(might not be a user)



Convert user to JSON

Result[User]



Result[User]

User => Json

Result[Json]



Map

A B=>F[A] F[B]

map =



Get user from database 
(might not be a user)



Get order for user (might 
not be an order)

Result[User]



Result[User]

User => 
Result[Order]

Result[Order]



FlatMap

A F[B]=>F[A] F[B]

flatMap =



Example



getOrder(id: UserId):   
  HttpResponse



Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] => 
HttpResponse
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Order => Json
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Result[Json] => 
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Order => Json

UserId

UserId => Result[User]

User => Result[Order]

Result[Json] => 
HttpResponse

fold



Summary

• Standard patterns for sequencing computations 

• F[A] map (A => B) = F[B] 

• F[A] flatMap (A => F[B]) = F[B] 

• fold is general transformation for algebraic data 
types 

• You can teach monads in an introductory course!



Type Classes



Ad-hoc polymorphism



Break free from your 
class oppressors!



Concerns that cross 
class hierarchy



E.g. serialize to JSON



Common behaviour 
without (useful) common 

type



Abstract behaviour to 
a type class



Can implement type class 
instances in ad-hoc 

manner



Conclusions



Scala is simple



3 patterns are 90% of 
code



4 patterns are 99% of 
code



Program design in 
Scala is systematic



 
underscore.io/training/
courses/essential-scala/ 

 
15% off with flatMap

http://underscore.io/training/courses/essential-scala/


Be like keyboard cat!


